3 research outputs found

    Psychosocial stress affects the acquisition of cerebellar-dependent sensorimotor adaptation

    Get PDF
    Despite being overlooked in theoretical models of stress-related disorders, differences in cerebellar structure and function are consistently reported in studies of individuals exposed to current and early-life stressors. However, the mediating processes through which stress impacts upon cerebellar function are currently unknown. The aim of the current experiment was to test the effects of experimentally-induced acute stress on cerebellar functioning, using a classic, forward saccadic adaptation paradigm in healthy, young men and women. Stress induction was achieved by employing the Montreal Imaging Stress Task (MIST), a task employing mental arithmetic and negative social feedback to generate significant physiological and endocrine stress responses. Saccadic adaptation was elicited using the double-step target paradigm. In the experiment, 48 participants matched for gender and age were exposed to either a stress (n = 25) or a control (n = 23) condition. Saliva for cortisol analysis was collected before, immediately after, and 10, and 30 min after the MIST. Saccadic adaptation was assessed approximately 10 min after stress induction, when cortisol levels peaked. Participants in the stress group reported significantly more stress symptoms and exhibited greater total cortisol output compared to controls. The stress manipulation was associated with slower learning rates in the stress group, while control participants acquired adaptation faster. Learning rates were negatively associated with cortisol output and mood disturbance. Results suggest that experimentally-induced stress slowed acquisition of cerebellar-dependent saccadic adaptation, related to increases in cortisol output. These ‘proof-of-principle’ data demonstrate that stress modulates cerebellar-related functions

    Facilitation of motor excitability during listening to spoken sentences is not modulated by noise or semantic coherence

    Get PDF
    Comprehending speech can be particularly challenging in a noisy environment and in the absence of semantic context. It has been proposed that the articulatory motor system would be recruited especially in difficult listening conditions. However, it remains unknown how signal-to-noise ratio (SNR) and semantic context affect the recruitment of the articulatory motor system when listening to continuous speech. The aim of the present study was to address the hypothesis that involvement of the articulatory motor cortex increases when the intelligibility and clarity of the spoken sentences decreases, because of noise and the lack of semantic context. We applied Transcranial Magnetic Stimulation (TMS) to the lip and hand representations in the primary motor cortex and measured motor evoked potentials from the lip and hand muscles, respectively, to evaluate motor excitability when young adults listened to sentences. In Experiment 1, we found that the excitability of the lip motor cortex was facilitated during listening to both semantically anomalous and coherent sentences in noise relative to non-speech baselines, but neither SNR nor semantic context modulated the facilitation. In Experiment 2, we replicated these findings and found no difference in the excitability of the lip motor cortex between sentences in noise and clear sentences without noise. Thus, our results show that the articulatory motor cortex is involved in speech processing even in optimal and ecologically valid listening conditions and that its involvement is not modulated by the intelligibility and clarity of speech
    corecore